Escame Room : la bombe à désamorcer

Escame Room : la bombe à désamorcer

L’ultime étape de challenge est de désamorcer la bombe soigneusement enfermée dans une mallette. Elle contient les tubes d’explosifs (fictifs bien sûr!) ainsi que l’électronique censé déclencher l’explosion. Le cœur est un Arduino Nano avec un clavier pour entrer le code de désamorçage, un module de huit afficheurs 7 segments pour le compte à rebours, un module nrf24l01+ pour démarrer le décompte à distance et un piezzo pour les bip du décompte et de prise en compte des touches du clavier. Le tout est alimenté par une batterie LiPo 3S, car j’en avait une sous la main,  mais une pile de 9V ça marche aussi.

Lire la suite Lire la suite

Matrices de LED RGB [Partie 2]

Matrices de LED RGB [Partie 2]

Dans la partie 1, nous avons vu que pour remplir les registres à décalage, il y avait 6 broches de données (R1, G1, B1 et R2, G2, B2) synchronisée par une broche d’horloge… un peu comme un port SPI avec 6 MOSI. D’où l’idée d’utiliser le port SPI hardware de l’Arduino pour envoyer les données. Oui mais… il n’y a qu’un seul MOSI. Mais dans la matrice c’est un registre à décalage… et on peut  mettre plusieurs matrices de LED en série pour les chaîner. Et si on chaînait une matrice avec elle même ? Ça pourrait faire une seule broche de donnée + l’horloge… donc MOSI et SCK.

Bon, c’est pas très net cette histoire. Avec un schéma ça sera plus simple.
À gauche, le schéma simplifié de la partie 1. On envoie en 64 fois en série (pour les 64 LED de large)  R1, G1, B1 et R2, G2, B2 en parallèle.
À droite, le schéma de cette partie. On a chaîné les registres à décalage entre eux. On envoie cette fois 384 données en série sur le premier registre, quand il sera plein il commencera à pousser au suivant et ainsi de suite jusqu’à remplir le dernier registre bleu. Vu que tout est décalé à chaque coup d’horloge, on transmet le dernier pixel bleu B2 en premier pour finir par le premier rouge R1.

 

 

Lire la suite Lire la suite

Station météo : alimentation solaire

Station météo : alimentation solaire

Dernière étape de la station météo sans fil : l’alimentation solaire avec un panneau photovoltaïque. Elle fournira une tension de 5V pour le capteur de particules fines et une tension de 3.3V pour le capteur BME280. Une cellule lithium-ion assurera la continuité de l’alimentation durant la nuit, elle sera automatiquement rechargée dès que la luminosité sera suffisante.

Lire la suite Lire la suite

Station météo : capteur de particules fines (SDS011)

Station météo : capteur de particules fines (SDS011)

Pour poursuivre la conception d’une station météo sans fil, on s’attaque cette fois ci à un capteur de particules fines PM10 et PM2,5. PM signifie Particulate Matter, suivi de la taille des particules en µm, donc en millièmes de millimètre.

A gauche le capteur de température, à droite le capteur de particules.

Ce sont des particules en suspension dans l’atmosphère de taille microscopique : leur diamètre est inférieur à 10µm pour les PM10 et inférieur à  2.5µm pour les PM2,5. Pour référence, un cheveux a un diamètre compris entre 50 et 100µm.

La mesure des particules est assurée par le SDS011 et un module radio nrf24l01+ gère la transmission sans fil. Le cœur est un  atmega328p qui peut être programmé avec arduino.

Lire la suite Lire la suite

Station météo : capteur de température, humidité et pression (BME280)

Station météo : capteur de température, humidité et pression (BME280)

Il s’agit d’une station météo sans fil avec mesure de la température, de l’humidité et de la pression atmosphérique. Elle utilise un module avec un capteur BME280 et un module nrf24l01 + pour la transmission sans fil. Le cœur est un  atmega328p qui peut être programmé avec arduino.

Lire la suite Lire la suite

Création d’un escape-room maison

Création d’un escape-room maison

Pour animer une soirée entre amis, j’avais eu l’ambition de créer de toute pièce une session d’escape dans une ambiance laboratoire. La plupart des énigmes et du décors sont réalisées avec des pièces et composants électroniques de récup ou que j’avais déjà à disposition. Il a juste fallu acheter un petit lot de cadenas miniatures à code dans un magasin de bricolage et quelques autres composants électroniques principalement sur aliexpress.

Le scénario est assez simple, on se retrouve enfermé dans le laboratoire d’un savant fou, une bombe déjà activée posée sur la table. Première difficulté, il n’y a au départ pas de décompte visible : il faut d’abord ouvrir la mallette de la bombe pour voir le décompte.

Chacune des différentes énigmes à résoudre rend hommage à des personnages emblématiques plus ou moins connus de la recherche scientifique :

  • Dmitri Ivanovitch Mendeleïev (tableau périodique)
  • Alessandro Volta (pile)
  • Heinrich Rudolf Hertz (ondes hertziennes)
  • Amedeo Avogadro (nombre d’Avogadro)
  • Alfred Nobel (dynamite)
  • Thomas Lowry/Joannes Brønsted (acides/bases)
  • Etienne Oehmichen (stroboscope)

Lire la suite Lire la suite

Escame Room : le détecteur de fréquences secrètes

Escame Room : le détecteur de fréquences secrètes

Le détecteur de fréquences va permettre au joueur de découvrir quelle fréquence écouter sur le poste de radio pour avoir l’indice qui va le mener à l’énigme suivante. Problème, pour pouvoir s’en servir il lui faut l’alimenter, or il n’a pas de batterie ni de pile sous la main… le poste de radio fonctionne sur secteur, sinon ça serait trop facile !

Pour le faire fonctionner le joueur doit fabriquer la batterie à partir du papier d’alu, du morceau de tube de cuivre, du sel et de l’eau qu’il trouvera dans la pièce. Cette batterie a une tension trop faible et ne délivre pas assez de courant pour alimenter correctement l’arduino et l’écran. Pour éviter l’utilisation de produit plus dangereux qui permettrait de fabriquer une batterie plus puissante, on va tricher… En réalité, le circuit est alimenté par une batterie lithium et on ne fait que détecter la tension de la batterie artisanale avec l’ADC (convertisseur analogique numérique). Si elle est validée, on allume l’écran avec la suite des instructions.

Lire la suite Lire la suite

Alarme d’inondation connectée

Alarme d’inondation connectée

Après avoir surveillé la température et l’ouverture de la porte du frigo, on reste dans la cuisine pour cette fois ci détecter les éventuels problèmes de lave-vaisselle, de mauvais refoulement de lave-linge ou autre joint de raccord de robinetterie fatigué, voir de ballon d’eau chaude tirant sa révérence.

La base du circuit reste identique, un Atmega328p( qui utilise l’horloge interne) comme microcontrôleur, un module radio nrf24l01+ et un petit transducteur piezzo pour l’alerte sonore. La détection de l’eau se fait via l’ADC qui mesure la tension au milieu d’un pont diviseur de tension composé d’une résistance élevée de 2MΩ et d’une « résistance variable » encore plus élevée composé d’air (si tout se passe bien) ou bien plus faible composée d’eau (si la fuite se présente). Dans ce cas, la tension mesurée chute fortement et l’alerte est donnée.

Lire la suite Lire la suite